significants.Rd
Function to get the features that are significant according to some thresholds from a DEGSet, DESeq2::DESeqResults and edgeR::topTags.
significants(object, padj = 0.05, fc = 0, direction = NULL, full = FALSE, ...) # S4 method for DEGSet significants(object, padj = 0.05, fc = 0, direction = NULL, full = FALSE, ...) # S4 method for DESeqResults significants(object, padj = 0.05, fc = 0, direction = NULL, full = FALSE, ...) # S4 method for TopTags significants(object, padj = 0.05, fc = 0, direction = NULL, full = FALSE, ...) # S4 method for list significants(object, padj = 0.05, fc = 0, direction = NULL, full = FALSE, newFDR = FALSE, ...)
object | |
---|---|
padj | Cutoff for the FDR column. |
fc | Cutoff for the log2FC column. |
direction | Whether to take down/up/ignore. Valid arguments are down, up and NULL. |
full | Whether to return full table or not. |
... | Passed to deg. Default: value = NULL. Value can be 'raw', 'shrunken'. |
newFDR | Whether to recalculate the FDR or not. See https://support.bioconductor.org/p/104059/#104072. Only used when a list is giving to the method. |
a dplyr::tbl_df data frame. gene
column has the feature name.
In the case of using this method with the results from degComps,
log2FoldChange
has the higher foldChange from the comparisons, and
padj
has the padj associated to the previous column. Then, there is
two columns for each comparison, one for the log2FoldChange and another
for the padj.
library(DESeq2) library(dplyr) dds <- makeExampleDESeqDataSet(betaSD=1) colData(dds)[["treatment"]] <- sample(colData(dds)[["condition"]], 12) design(dds) <- ~ condition + treatment dds <- DESeq(dds)#>#>#>#>#>#>#>#>#>#>#> #> #> #>#>#> #> #> #>significants(res, full = TRUE) %>% head#> # A tibble: 6 x 5 #> gene log2FoldChange padj log2FoldChange_condition… padj_condition_A_v… #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 gene102 0.942 3.93e-2 0.942 0.0393 #> 2 gene108 -0.953 2.99e-2 -0.953 0.0299 #> 3 gene116 -1.31 2.59e-3 -1.31 0.00259 #> 4 gene119 -2.03 1.18e-6 -2.03 0.00000118 #> 5 gene120 1.74 1.33e-5 1.74 0.0000133 #> 6 gene122 1.09 3.22e-2 1.09 0.0322significants(res, full = TRUE, padj = 1) %>% head # all genes#> # A tibble: 6 x 7 #> gene log2FoldChange padj log2FoldChange_… log2FoldChange_… padj_condition_… #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 gene1 -0.113 0.952 -0.788 -0.113 0.388 #> 2 gene… 1.62 0.0931 1.62 -0.0855 0.0931 #> 3 gene… -0.310 0.479 -0.310 -0.339 0.479 #> 4 gene… 0.645 0.448 0.645 -0.528 0.448 #> 5 gene… 0.0479 0.914 0.0479 -0.550 0.914 #> 6 gene… 0.942 0.0393 0.942 -0.258 0.0393 #> # … with 1 more variable: padj_treatment_B_vs_A <dbl>