DEGSet.Rd
S4 class to store data from differentially expression analysis. It should be compatible with different package and stores the information in a way the methods will work with all of them.
DEGSet(resList, default) DEGSet(resList, default) as.DEGSet(object, ...) # S4 method for TopTags as.DEGSet(object, default = "raw", extras = NULL) # S4 method for data.frame as.DEGSet(object, contrast, default = "raw", extras = NULL) # S4 method for DESeqResults as.DEGSet(object, default = "shrunken", extras = NULL)
resList | List with results as elements containing log2FoldChange, pvalues and padj as column. Rownames should be feature names. Elements should have names. |
---|---|
default | The name of the element to use by default. |
object | Different objects to be transformed to DEGSet when using |
... | Optional parameters of the generic. |
extras | List of extra tables related to the same comparison when using |
contrast | To name the comparison when using |
For now supporting only DESeq2::results()
output.
Use constructor degComps()
to create the object.
The list will contain one element for each comparison done. Each element has the following structure:
DEG table
Optional table with shrunk Fold Change when it has been done.
To access the raw table use deg(dgs, "raw")
, to access the
shrunken table use deg(dgs, "shrunken")
or just deg(dgs)
.
library(DESeq2)#>#>#>#>#> #>#>#> #> #> #>#>#> #>#>#> #> #> #> #> #> #>#> #>#>#> #>#>#>#>#>#>#>#> #> #> #>#>#>#> #>#>#> #>#>#> #>#>#> #>#>#> #>library(edgeR)#>#> #>#>#> #>#>#> #>library(limma) dds <- makeExampleDESeqDataSet(betaSD = 1) colData(dds)[["treatment"]] <- sample(colData(dds)[["condition"]], 12) design(dds) <- ~ condition + treatment dds <- DESeq(dds)#>#>#>#>#>#>#>#>#>#>#> #> #> #>deg(res)#> log2 fold change (MAP): condition B vs A #> Wald test p-value: condition B vs A #> DataFrame with 1000 rows and 6 columns #> baseMean log2FoldChange lfcSE #> <numeric> <numeric> <numeric> #> gene202 595.738080502665 2.84842810352625 0.266347713336691 #> gene710 117.423055944441 2.27457157814062 0.269412722270367 #> gene365 62.4434899710059 2.58422310739862 0.312590047837112 #> gene92 220.780204589055 2.34371133129609 0.293935357285173 #> gene364 504.522116500683 2.02714357936619 0.261124625693044 #> ... ... ... ... #> gene817 1.01863690444656 0.449433023322897 0.445454565205662 #> gene843 0.337116176782868 -0.213542721980008 0.335419175582519 #> gene896 0.641791262357825 -0.193113193147619 0.453528848117175 #> gene929 0.400097105619871 0.148754379342596 0.336592062169539 #> gene986 1.03912504596143 -0.08078789533133 0.501091699324092 #> stat pvalue padj #> <numeric> <numeric> <numeric> #> gene202 10.4242414625226 1.92186681865069e-25 1.84307027908601e-22 #> gene710 8.19578166036082 2.48969903778264e-16 1.19381068861678e-13 #> gene365 8.02865482517521 9.85471916802617e-16 3.15022522737903e-13 #> gene92 7.7626720152767 8.31584691463868e-15 1.99372429778462e-12 #> gene364 7.51756890822073 5.58041485417993e-14 1.07032356903171e-11 #> ... ... ... ... #> gene817 1.05361747680227 0.292058084434074 NA #> gene843 -0.406932816121088 0.684057332932902 NA #> gene896 -0.612499137852159 0.5402075682426 NA #> gene929 0.414219583248068 0.678713301164469 NA #> gene986 0.0436335995171099 0.965196468651691 NA#> <numeric>#> # A tibble: 1,000 x 7 #> gene baseMean log2FoldChange lfcSE stat pvalue padj #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 gene202 596. 2.85 0.266 10.4 1.92e-25 1.84e-22 #> 2 gene710 117. 2.27 0.269 8.20 2.49e-16 1.19e-13 #> 3 gene365 62.4 2.58 0.313 8.03 9.85e-16 3.15e-13 #> 4 gene92 221. 2.34 0.294 7.76 8.32e-15 1.99e-12 #> 5 gene364 505. 2.03 0.261 7.52 5.58e-14 1.07e-11 #> 6 gene968 69.4 2.62 0.345 7.11 1.17e-12 1.87e-10 #> 7 gene836 49.2 2.41 0.335 7.05 1.78e-12 2.43e-10 #> 8 gene77 32.5 -2.31 0.334 -6.75 1.50e-11 1.80e- 9 #> 9 gene342 484. 1.45 0.225 6.50 7.90e-11 8.42e- 9 #> 10 gene880 27.5 2.80 0.402 6.48 9.01e-11 8.64e- 9 #> # … with 990 more rows# From edgeR dge <- DGEList(counts=counts(dds), group=colData(dds)[["treatment"]]) dge <- estimateCommonDisp(dge) res <- as.DEGSet(topTags(exactTest(dge))) # From limma v <- voom(counts(dds), model.matrix(~treatment, colData(dds)), plot=FALSE) fit <- lmFit(v) fit <- eBayes(fit, robust=TRUE) res <- as.DEGSet(topTable(fit, n = "Inf"), "A_vs_B")#>