It can accept a list of new padj values matching the same dimmensions than the current vector. It can calculate the lfdr based on fdrtool::fdrtool function.

degDefault(object)

degCorrect(object, fdr)

# S4 method for DEGSet
degDefault(object)

# S4 method for DEGSet
degCorrect(object, fdr)

Arguments

object

DEGSet

fdr

It can be fdr-stat, fdr-pvalue, vector of new padj

object

DEGSet

Examples

library(DESeq2) library(dplyr)
#> #> Attaching package: ‘dplyr’
#> The following object is masked from ‘package:matrixStats’: #> #> count
#> The following object is masked from ‘package:Biobase’: #> #> combine
#> The following objects are masked from ‘package:GenomicRanges’: #> #> intersect, setdiff, union
#> The following object is masked from ‘package:GenomeInfoDb’: #> #> intersect
#> The following objects are masked from ‘package:IRanges’: #> #> collapse, desc, intersect, setdiff, slice, union
#> The following objects are masked from ‘package:S4Vectors’: #> #> first, intersect, rename, setdiff, setequal, union
#> The following objects are masked from ‘package:BiocGenerics’: #> #> combine, intersect, setdiff, union
#> The following objects are masked from ‘package:stats’: #> #> filter, lag
#> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union
dds <- makeExampleDESeqDataSet(betaSD=1) colData(dds)[["treatment"]] <- sample(colData(dds)[["condition"]], 12) design(dds) <- ~ condition + treatment dds <- DESeq(dds)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
res <- degComps(dds, contrast = list("treatment_B_vs_A"))
#> Doing 1 element(s).
#> Doing results() for each element.
#> Doing lcfSrink() for each element.
#> using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014). #> #> Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'. #> See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette. #> Reference: https://doi.org/10.1093/bioinformatics/bty895
degCorrect(res, fdr = "lfdr-stat")
#> Step 1... determine cutoff point #> Step 2... estimate parameters of null distribution and eta0 #> Step 3... compute p-values and estimate empirical PDF/CDF #> Step 4... compute q-values and local fdr #> #> Step 1... determine cutoff point #> Step 2... estimate parameters of null distribution and eta0 #> Step 3... compute p-values and estimate empirical PDF/CDF #> Step 4... compute q-values and local fdr #>
#> Comparisons: treatment.B.vs.A #> Results in comparison: raw,shrunken #> Default is: shrunken